GROUP RINGS OF HYPERABELIAN GROUPS

BY

P, F. SMITH AND R. L. SNIDER*

ABSTRACT

If k is a field of characteristic $p > 0$ then we find all hyper-(Abelian or locally finite-p') groups G such that the augmentation ideal of the group algebra *kG* has the AR property.

Let X be a class of groups. A group G is a hyper-X group if every non-trivial homomorphic image of G contains a non-trivial normal subgroup which is an $\mathscr X$ -group. If $\mathscr Y$ is also a class of groups then by an $\mathscr X\mathscr Y$ -group we shall mean a group G which contains a normal subgroup H such that H is an $\mathcal X$ -group and *G/H* a \mathcal{Y} -group. If $\mathcal{X}_1, \mathcal{X}_2, \cdots, \mathcal{X}_n$ is a finite collection of group classes then by an $\mathscr{X}_1 \mathscr{X}_2 \cdots \mathscr{X}_n$ -group is meant an \mathscr{X}_1 ($\mathscr{X}_2(\mathscr{X}_3 \cdots (\mathscr{X}_{n-1}\mathscr{X}_n))$)-group. We shall denote the classes of Abelian, finitely generated and finite groups by $\mathcal{A}, \mathcal{G}, \mathcal{F}$, respectively. Let p be a prime. Then \mathcal{N}_p will denote the class of nilpotent groups such that each upper central factor is an extension of a finitely generated group by a p' -torsion group. (A p' -torsion group is a torsion group such that every non-trivial element has order coprime to p .) A group G is locally finite- p' if every finite subset generates a finite subgroup of order coprime to p. The class of locally finite-p' groups will be denoted by \mathscr{L}_{p} .

If G is a group then a p-chief factor of G is a group H/K such that $K \subseteq H, K$ and H are normal subgroups of G and H/K is a minimal normal p-subgroup of the group G/K . If k is a field then g_k , or g if there is no ambiguity about k, will denote the augmentation ideal of the group algebra *kG.* The purpose of this note is to prove the following theorem which generalizes [4, theorem E].

THEOREM A. Let k be a field of characteristic $p > 0$ and G a hyper-($\mathcal{A} \cup \mathcal{L}_p$) *group. Then the augmentation ideal of the group algebra kG has the* AR *property if and only if G is an* $\mathscr{L}_p \mathcal{N}_p(\mathscr{G} \cap \mathscr{A}) \mathscr{F}$ *-group and G centralizes all p-chief factors.*

[†] The second author is partially supported by NSF grant MCS-7828082.

Received December 8, 1979

The ideal g has the AR property provided for every right ideal E and left ideal L of $R = kG$ there exists a positive integer n such that $E \cap g^n \leq Eg$ and $L \cap g^n \leq gL$. Let $\varphi: R \to R$ be the antiautomorphism induced by the antiautomorphism $x \to x^{-1}$ $(x \in G)$ of G. Since $\varphi(g) = g$ it follows that g has the AR property if and only if for every right ideal E there exists $n \ge 1$ such that $E \cap g^n \leq Eg.$

Theorem A is a consequence of the following result.

THEOREM B. Let G be a group which contains a finite chain $1 =$ $G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_n = G$ of normal subgroups G_i such that G_i/G_{i-1} is an \mathscr{L}_p -group *or an* $({\mathcal A} \cap {\mathcal N}_p)$ -group for each $1 \leq i \leq n$. Then G is an ${\mathcal L}_p{\mathcal N}_p({\mathcal G} \cap {\mathcal A}){\mathcal F}$ -group.

1. Proof of Theorem A

In this section we show how to derive Theorem A from Theorem B. Let p be a prime. Following [4] we say that a group G satisfies Max-sn* if for any ascending chain of subgroups $H_1 \leq H_2 \leq H_3 \leq \cdots$ such that H_i is normal in H_{i+1} for each $i \ge 1$, there exists a positive integer n_0 such that H_{n+1}/H_n is an \mathscr{L}_p -group for all $n\geq n_0$.

PROOF OF THEOREM A. Let k be a field of characteristic $p > 0$ and G a hyper-($\mathscr{A} \cup \mathscr{L}_p$) group. Suppose first that the augmentation ideal g of *kG* has the AR property. By [4, lemma A] G satisfies Max-sn $*$ and by [4, lemma B] there exists a finite chain

$$
1 = G_0 \triangleleft G_1 \triangleleft \cdots \triangleleft G_n = G
$$

of normal subgroups G_i such that G_i/G_{i-1} is an $\mathcal A$ -group or an $\mathcal L_p$ -group for each $1 \le i \le n$. Since G satisfies Max-sn^{*} it follows that each Abelian factor G_i/G_{i-1} is an extension of a finitely generated group by a p' -torsion group, i.e. G_i/G_{i-1} is an ($\mathcal{A} \cap \mathcal{N}_p$)-group. Also, by [4, lemma 3.3] G centralizes all p-chief factors. Hence by Theorem B, G is an $\mathscr{L}_{p}\mathcal{N}_{p}(\mathscr{G}\cap\mathscr{A})\mathscr{F}$ -group.

Conversely, suppose that G is an $\mathscr{L}_p \mathcal{N}_p(\mathscr{G} \cap \mathscr{A}) \mathscr{F}$ -group. Let L be a normal \mathscr{L}_p -subgroup of G such that $H = G/L$ is an $\mathscr{N}_p(\mathscr{G} \cap \mathscr{A})\mathscr{F}$ -group. Suppose that $\mathfrak h$ has the AR property. If E is a right ideal of kG then there exists $n \ge 1$ such that $E \cap g^n \leq Eg + \overline{I}$ where $\overline{I} = I(kG)$ and I is the augmentation ideal of kL. Since L is an \mathscr{L}_p -group it follows that kL is Von Neumann regular and hence for each element r in \overline{t} there exists a in g such that $r(1-a)=0$. It follows that $E \cap g'' \leq Eg$. Thus, without loss of generality $L = 1$.

Let N be a normal \mathcal{N}_p -subgroup of G such that G/N is a $(\mathcal{G} \cap \mathcal{A})\mathcal{F}$ -group. By $[3,$ theorem C'] the augmentation ideal π of kN has the AR property. Let Vol. 38, 1981 **GROUP RINGS** 25

 $S = kN$. Then S satisfies the right and left Ore condition with respect to $T = \{1 - a : a \in \mathfrak{n}\}\)$. Let $R = kG$. Because T is G-invariant, R satisfies the right and left Ore conditions with respect to T (see the proof of $[1,1]$ emma 13.3.5 (ii)]). If

$$
I = \{ s \in S : st = 0 \text{ for some } t \text{ in } T \}
$$

and

$$
J = \{r \in R : rt = 0 \text{ for some } t \text{ in } T\}
$$

then I is a G-invariant ideal of S and $J = IR = RI$. The elements $t + I(t \in T)$ of *S*/*I* are all regular and hence the elements $t + J$ ($t \in T$) of *R*/*J* are regular. We can form the partial quotient rings S_n and R_n where R_n is the partial quotient ring of R with respect to T. Note that S_n is a subring of R_n . By [3, corollary C1] or [5, theorem B] S_n is a Noetherian ring and clearly $n S_n$ has a centralizing set of generators. By a result of Roseblade, πR_n has the AR property and hence $\bar{\mathfrak{n}} = \mathfrak{n}R$ has the AR property in the ring R [1, theorem 11.2.9].

Let F be a right ideal of R . There exists a positive integer m such that $F \cap \bar{\mathfrak{n}}^m \subseteq F\bar{\mathfrak{n}}$. Let $X = N^{p^m}$. Then N/X is an \mathcal{N}_p -group and also a p-group. It follows that N/X is finite. Let $Q = G/X$. Then Q is polycyclic-by-finite and Q centralizes p-chief factors so that by another result of Roseblade q has the AR property (see $[1,$ theorem 11.2.15]). There exists a positive integer d such that $F \cap g^d \subseteq Fg + \bar{x}$. But $\bar{x} \subseteq \bar{\pi}^m$ and it follows that $F \cap g^d \subseteq Fg$. Thus g has the AR property and this completes the proof of Theorem A.

2. Proof of Theorem B

Let $\mathscr X$ denote the class of groups G such that there exists a finite chain

$$
(*) \qquad \qquad 1 = G_0 \lhd G_1 \lhd \cdots \lhd G_n = G
$$

of normal subgroups G_i such that G_i/G_{i-1} is an \mathscr{L}_p -group or an $(\mathscr{A} \cap \mathscr{N}_p)$ group for each $1 \le i \le n$. Let \mathcal{X}_p denote the class of \mathcal{X} -groups G which centralize all p-chief factors.

LEMMA 1 (See [4, lemma F]). $\mathscr{X} \subseteq \mathscr{X}_P F$.

LEMMA 2. *If G is a torsion* \mathscr{X}_p -group then G is an extension of an \mathscr{L}_p -group by *a finite p-group.*

PROOF. Let L be the maximal normal \mathcal{L}_p -subgroup of G (see [2, p. 35 theorem 1.45]). Suppose $L \neq G$ and G/L is not a finite p-group. Then there exist

normal subgroups H and K of G such that $L \subseteq K \subseteq H$, K/L is a non-trivial finite p-group and H/K a non-trivial \mathcal{L}_p -group. Without loss of generality we can suppose that $G = H$. Choose $T \triangleleft G$ such that $L \subseteq T \subseteq K$ and K/T is a p-chief factor of G. Then *K/T* is central in *G/T* and by a theorem of Schur (see [2, p. 102 theorem 4.12]) *(G/T)'*, the derived subgroup of G/T , is an \mathcal{L}_p -group. Thus there exists $X \triangleleft G$ such that $T \subseteq X$, X/T is an \mathscr{L}_p -group and G/X a finite p-group. Now consider *X/L.* By induction on the order of *K/L* it follows that *X/L* is an extension of an \mathcal{L}_p -group by a finite p-group. Thus G/L is a finite p-group by [2, p. 35 theorem 1.45], a contradiction. The result follows.

Let \mathcal{F}_p denote the class of finite p-groups. Then Lemma 2 states that torsion \mathscr{X}_p -groups are $\mathscr{L}_p\mathscr{F}_p$ -groups.

LEMMA 3. If an \mathscr{X}_p -group G is an extension of a torsion-free Abelian group by an L_p -group then G is an $L_p \mathcal{A}$ -group.

PROOF. Let A be a torsion-free Abelian normal subgroup of G such that G/A is an \mathscr{L}_p -group. Let *n* be a positive integer. Then G/A^{p^n} is a torsion \mathscr{X}_p -group and hence there exists $H \triangleleft G$ such that $A^{p^n} \leq H$, H/A^{p^n} is an \mathscr{L}_p -group and G/H an \mathscr{F}_p -group (Lemma 2). Then $G = HA$ and $H \cap A = A^{p^n}$. Since $G/H \cong A/A^{p^n}$ it follows that G/H is Abelian and hence $G' \subseteq H$. Thus $A \cap G' \subseteq A^{p^n}$ for all positive integers *n*. There exists a finitely generated subgroup B of A such that A/B is a p'-group. Then $A^{p^n} \cap B = B^{p^n}$ and hence $(\bigcap_{n=1}^{\infty} A^{p^n}) \cap B = 1$. Since A is torsion-free it follows that $\bigcap_{n=1}^{\infty} A^{p^n} = 1$ and hence $A \cap G' = 1$. Thus G' is an \mathscr{L}_p -group and it follows that G is an $\mathscr{L}_p\mathscr{A}$ -group.

The next lemma is clear.

LEMMA 4. $({\mathscr{F}_p}{\mathcal{N}_p})\cap {\mathscr{X}_p}\leq {\mathcal{N}_p}.$

A group G has finite Prufer rank r , where r is a positive integer, if every finitely generated subgroup can be generated by r elements, and r is the least positive integer with this property.

LEMMA 5. $\mathscr{X}_p \leq \mathscr{L}_p \mathscr{N}_p(\mathscr{G} \cap \mathscr{A})\mathscr{F}$.

PROOF. Let G be an \mathscr{X}_p -group with series (*). We prove the result by induction on n, the case $n = 1$ being clear. Suppose first that G does not contain any non-trivial normal \mathcal{L}_p -subgroup. Let $A = G_1$. Then A is an Abelian subgroup of G. Let $L \triangleleft G$ with $A \subseteq L$ such that L/A is the maximal normal \mathscr{L}_p -subgroup of G/A . By induction on n the group G/L is an $\mathscr{N}_p(\mathscr{G} \cap \mathscr{A})\mathscr{F}_$ group.

Vol. 38, 1981 GROUP RINGS 27

Suppose first that A is a torsion group. Then A is a finite p -group. By Lemma 2, $L = A$ and by Lemma 4, G is an $\mathcal{N}_p((\mathcal{G} \cap \mathcal{A})\mathcal{F}$ -group. So suppose that A is not a torsion group. Let T be the torsion subgroup of A . Then T is a finite p-group and so there exists a positive integer n such that A^{p^n} is torsion-free. Moreover, A/A^{p^n} is a finite p-group since G is an \mathcal{X}_p -group. Thus G/A^{p^n} is an $\mathscr{L}_{\mathcal{P}}\mathcal{N}_{\mathcal{P}}(\mathscr{G}\cap\mathscr{A})\mathscr{F}$ -group by Lemmas 2 and 4. So without loss of generality we can suppose that A is torsion-free.

Let C be the centralizer in L of A. Then L/C is Q-linear and so finite (see [6, theorem 9.33]). Moreover, $A \subseteq C$ and C/A is an \mathcal{L}_p -group. By Lemma 3, C is Abelian. The torsion subgroup of C is a finite p -group and hence there exists a positive integer m such that $H = C^{p^{m}}$ is torsion-free and C/H is a finite p-group. Thus L/H is a finite group and by Lemma 2, L/H is an $\mathscr{L}_p\mathscr{F}_p$ -group. Applying Lemma 3, we see that L is an \mathcal{AF}_p -group. As before, L contains a normal subgroup K of G such that K is torsion-free Abelian and L/K is an \mathscr{F}_p -group.

Let $N \triangleleft G$ such that $L \subseteq N$ and N/L is the Fitting subgroup of G/L . Then the torsion subgroup of N/L is a finite p-group. Since G is an \mathscr{X}_p -group it follows that N/K is a nilpotent group and the torsion subgroup of N/K is a finite p-group. There exists a positive integer s such that if $U = N^{p^{r}}K$ then U/K is torsion-free and N/U is a p-group. Since G is an \mathscr{X}_p -group it follows that N/U is a finite group. Since G/U is a $(\mathscr{G} \cap \mathscr{A})\mathscr{F}$ -group we know that G/U is a ($\mathscr{G} \cap \mathscr{A}$) \mathscr{F} -group. In fact there exists a normal subgroup V of G such that $U \subset V$, V/U is finitely generated torsion-free Abelian and G/V is finite. Thus V is torsion-free solvable and *G/V* finite. Moreover, G has finite Prufer rank by [2, p. 34 lemma 1.44]. By [7, theorem 1.1] G is Q -linear. By Mal'cev's Theorem (see [6, theorem 3.6]) G is an $\mathcal{N}_p(\mathcal{A} \cap \mathcal{N}_p)\mathcal{F}$ -group. Moreover, there exists a finite algebraic extension K of Q and normal subgroups $X \subseteq Y$ of G such that X is an \mathcal{N}_p -group, G/Y a finite group and Y/X an $(\mathcal{A} \cap \mathcal{N}_p)$ -group such that *Y/X* can be embedded in the direct product of a finite number of copies of K^* , the multiplicative group of non-zero elements of K . It follows that Y/X is finitely generated and hence G is an $\mathcal{N}_p(\mathcal{G}\cap\mathcal{A})\mathcal{F}$ -group.

Finally, let G be an \mathscr{X}_p -group. Let M be the maximal normal \mathscr{L}_p -subgroup of G. Then G/M does not contain any non-trivial normal \mathcal{L}_p -subgroups by [2, p. 35] theorem 1.45] and by the above argument G/M is an $\mathcal{N}_p(\mathcal{G} \cap \mathcal{A})\mathcal{F}$ -group. Thus G is an $\mathscr{L}_p \mathscr{N}_p(\mathscr{G} \cap \mathscr{A}) \mathscr{F}$ -group.

Combining Lemmas 1 and 5 completes the proof of Theorem B.

REFERENCES

1. D. S. Passman, *The Algebraic Structure of Group Rings*, Wiley-Interscience, New York, 1977.

2. D. J. S. Robinson, *Finiteness Conditions and Generalized Soluble Groups,* Vol. I, Springer-Verlag, Berlin, 1972.

3. P. F. Smith, The AR *property and chain conditions in group rings,* Israel J. Math 32 (1979), 131-144.

4. P. F. Smith, *More on the AR property and chain conditions in group rings,* Israel J. Math. 35 (1980), 186-204.

5. R. L. Snider, The *zero divisor conjecture [or some solvable groups,* Pacific J. Math. (to appear).

6. B. A. F. Wehrfritz, *Infinite Linear Groups,* Springer-Verlag, Berlin, 1973.

7. B. A. F. Wehrfritz, *On the holomorphs of soluble groups o[finite rank,* J. Pure Appl. Algebra 4 (1979), 55-69.

UNIVERSITY OF WISCONSIN

MADISON WI 53706 USA AND

UNIVERSITY OF GLASGOW GLASGOW G12 8QW SCOTLAND, O.K.

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY BLACKSBURG, VA 24061 USA